NTRU
In this page we will discuss about NTRU (N-th degree Truncated Ring Unit).
Pythagoras theorem - \(a^2+b^2=c^2\)
Integral - \(\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}\)
Matrix - \(M = [a_{ij}], \ \dim(M) = m \times n\)
Matrix - \( M = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \dim(M) = m \times n \)
Poly mul - \( h_k = \sum_{i=0}^{n-1} f_i \, g_{(k-i) \bmod n}, \quad k = 0, 1, \dots, n-1 \)
Poly mul - \( (f \circledast g)(x) = \sum_{k=0}^{n-1} \left( \sum_{i=0}^{n-1} f_i \, g_{(k-i) \bmod n} \right) x^k \)
Img1 -

Table1 -